Automated Rescue Vehicle (A.R.V)

Group 7

Bernardo Correa Electrical Eng.

Malik Santos Electrical Eng.

Samuel Frisco Electrical Eng.

Dariel Tenf Computer Eng.

Motivation

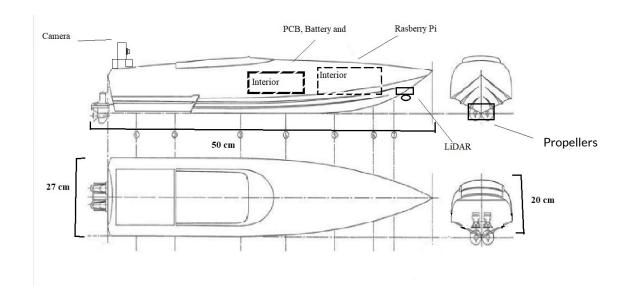
- The increasing capabilities, but constant risks in ocean exploration
- Human dependence on large water sources
- Provide an independent device to assist in ocean search and rescue, following shipwrecks or passengers overboard
- The enormous difficulty in finding survivors or wreckage amid rapidly changing conditions
- Autonomous operation to allow for the operator to remain contributing to the search efforts, alongside the A.R.V.

Goals and Objectives

- Provide an additional set of eyes in search and rescue
- Report a degree of certainty that the A.R.V. is in fact sees a person or wreckage
- Differentiate between people and debris, rocks, marine life, buoys, etc
- Once a specified degree of certainty is met, travel to the detected survivor autonomously
- Transmit a constantly updating GPS signal for the operator and rescue team to track

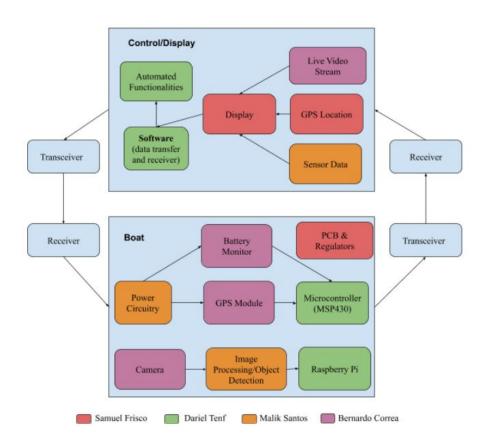
Application

- Helping Cruise Ships detect man overboard.
- Busy harbor or Inlet
- Customers provide GPS location for search and rescue help efforts.



Prototype Illustration

${\bf Speaking: Malik \, Santos}$

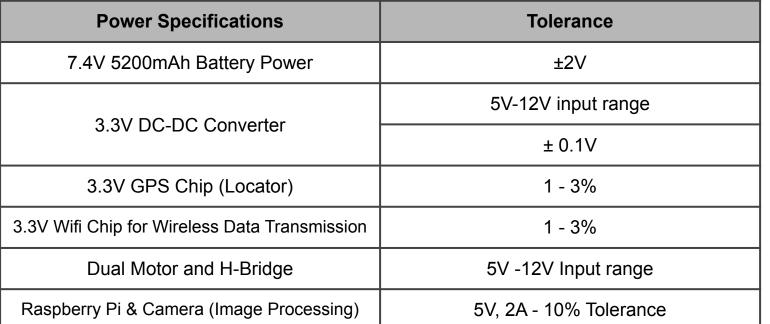


Speaking: Malik Santos

Complete Block Diagram

Requirements

Requirement	Value	
Object Detection for a Person	70% assurance	
GPS Location Update	<accurate 3="" a="" decimal="" places<="" to=""></accurate>	
Communication Range	>10 meters	
System Runtime	>30 minutes	
Speed	<6 miles per hour	
Battery Lifetime	>30 minutes	
Low Battery Alert	<= 6V	



: Demonstrable

Speaking: Bernardo Correa

Specifications

The Boat: Flytec 2011-5

- Lightweight, yet durable ABS plastic construction
- 2-24hour run time, 10-12 hour charge time, 500 meter control distance
- Large size: 50x27x20 cm (height accounting for antenna)
- Ample internal space for additional components
- Sturdy 4 ½ lb weight, yet capable of 3.4 mph (2.95 knots)

Microcontroller Selection (for PCB)

Speaking: Malik Santos

- G2553
 - **Positives**
 - Low Pin count, Easy to solder
 - Cheap
 - Negatives
 - Low Memory & RAM
 - 1 UART
- FR6989
 - **Positives**
 - **High Resolution**
 - Good RAM memory
 - Negatives
 - 2 UART
 - High Pin Count, Expensive
- FR5994
 - **Positives**
 - 8kB of RAM, High Resolution
 - 4 UART
 - Negatives
 - **High Pin Count**
 - Expensive

Specifications	MSP430G2553	MSP430FR6989	MSP430FR5994
Memory (kB)	16	128	<mark>256</mark>
RAM (kB)	0.5	2	8
ADC	10-bit	12-bit	12-bit
UART	1	2	4
Pins	20	80	80
Price	\$0.79	\$3.30	\$3.07

Microcontroller Selection (For Image Processing)

Speaking: Malik Santos

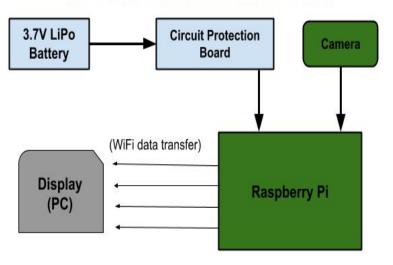
- Raspberry Pi 4, Model B image processing
 - Object detection via TensorFlow library
 - WiFi communication
 - o Implemented in machine learning
 - User friendly, proprietary OS and camera

- STM32 ARM Cortex M4 considered for image processing
 - High power, low RAM (relative to Pi)
 - Fast memory access times (proximity)
 - Less support

Specification	TI MSP430 (Sensor Use)	Raspberry Pi 4 (Image Processing)	STM32
Operating Voltage	1.8-3.6V	5.1V	3.3V
Current Consumption	12.5mA	640mA	117mA
Chip		Cortex A-72 ARMv8	ARM Cortex M4
Clock Frequency		1.5 Ghz	84 -180 MHz
Memory	0.5-512 KB	SD card/external	128KB - 2056KB
RAM	0.125-66KB	2-8GB	32KB - 384KB
I/O Pins	4-100	40	114
Architecture	16-bit	64-bit	32-bit
Dimensions	1.75x1.85 in	2.2x3.35 in	3.27x2.26 in
Weight	0.7 oz	1.5 oz	

Raspberry Pi 4

Speaking: Malik Santos



Raspberry Pi 4, Model B - image processing

- Powered via 3.7V LiPo add on battery for portable power
- Internal protection from battery circuit board
- Proprietary camera optimized to work with the board
- Video transmission over WiFi

Figure 31: Raspberry Pi Interface Design Block Diagram

Raspberry Pi Camera

Speaking: Malik Santos

- Camera Module V2
 - o Maximum 1080p
 - OpenCV and TensorFLow capable
 - Wired connection, easy installation

		>
Aldido.		0
4	CO. CO.	

Feature/Specification	Camera Module v2
Operating Voltage	Regulated by Raspberry Pi Board
Resolution	1080p/1080TVL (high-definition)
Pixel	8 megapixel 3280 x 2464
Weight	3g
Data Transmission	Wired
Connector Type	CSI/Flex Cable
Power/Current Rating	Regulated by Raspberry Pi Board
Cost	\$29.95

Secondary Camera Options

Speaking: Malik Santos

Eachine TX06

- Positives
 - Voltage Rating
 - Light weight, Wireless
 - Cheap
- Negatives
 - Low Resolution
 - No Night Mode

• Foxeer Razer Micro Camera

- Positives
 - High Resolution
 - Night Mode
- Negatives
 - Voltage Rating
 - Heavy

Specifications	Camera Module v2 (Selected)	Eachine TX06	Foxeer Razer Micro Camera
Operating Voltage	Regulated by Raspberry Pi Board	3.3V - 5.5V	4.5V - 25V
Max Resolution	1080p/1080TVL (high-definition)	700p/700TVL	1200TVL
Night Mode	No	No	Yes
Weight	3g	2.8g	4.5g
Wireless Compatibility	Yes	Yes	Yes
Power/Current Rating	Regulated by Raspberry Pi Board	25mW/280A (Typical)	30mA/250A (typical)
Cost	\$29.95	\$16.05	\$24.99

Battery Selection: Boat Power

Speaking: Malik Santos

- Technologies: LiPo vs NiMH
 - o NiMH cheaper, easier to use, longer life
 - LiPo higher maintenance, lighter, more efficient,

- Factory Lithium Ion Polymer battery for the Flytec 2011-5
 - o 7.4V 5200mAh, 4 cell
 - Reduction required for ADC implementation (see voltage monitoring)
 - Up to 12 hours run time powering the boat each (24hr total)

Battery Comparison

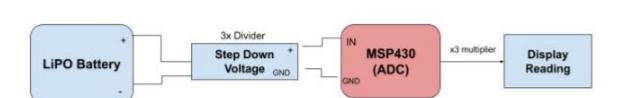
	Nickel-Metal Hydride	Lithium Ion Polymer
Specific Energy	60-120 W*h/kg	100-265 W*h/kg
Energy Density	140-300 W*h/l	250-730 W*h/l
(Charge) Cycle Durability	180 - 2000 cycles	300-500 cycles
Cell Voltage Rating	1.2 V	3.0 V

Battery Selection: Pi Power

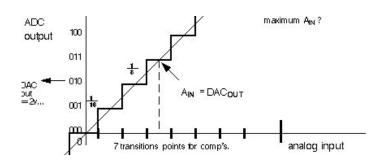
- - LiPo, 3.7V, 3800mAh
 - Up to 9 hours run time powering the Raspberry Pi

Makerfocus Raspberry Pi Battery Pack, selected

- Integrated under and overvoltage, and overcharge protection, charge level indication,
- PiJuice HAT, considered
 - o Proven, but expensive
 - o Doubles as a UPS, protects from data loss
 - o Built in RTC
- MakerHawk RPi UPS HAT, considered
 - Replaceable battery option
 - Lacks support



Specifications	PiJuice HAT	MakerFocus RPi Batt Pack	MakerHawk RPi UPS HAT
Capacity	1820 mAh	3800 mAh	3600-7000 mAh
Battery Voltage	3.3-5V	3.7 V	2.5-4.2 Volts
Cost	\$88.95	\$20.99	\$21.99
Runtime	4-6 hours	9 hours	>8 hours
Dimensions	4.33 x 4.92 x 1.38 inches	3.35 x 2.17 x 0.79 inches	3.82 x 2.24 x 0.39 inches


Battery Voltage Monitor

Speaking: Bernardo Correa

- Voltage is monitored using ADC (Analog to Digital Conversion)
 - MSP430 Analog Pinout has a 3.5V limit
- Voltage is stepped down for microcontroller input
- ADC Resolution is 10 bits
 - Digital Output will be converted to appropriate voltage reading
- Voltage reading is multiplied by 3 and sent to display

Speaking: Bernardo Correa

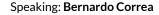
Battery Voltage Monitor Requirements and Limitations

Using ADC to Monitor Battery Life

Voltage Monitor Requirement	Send Battery Voltage 10% Tolerance
Reference Voltage	2.5V or 2.0V
ADC Resolution	10 Bits
Analog Pin Limitation	3.5V Max

Progress Report:

Initial Prototype Testing - Completed PCB Implementation - Completed Total Subsystem Progress: 100%


Dual Motor Interface for Automation

- H-Bridge Motor Driver: Used to drive motor either forwards or backwards
- Input voltage: System Requirements is 7.4V but motors can run at >5V

Two Enable Pins and 4 Logic pins

- Enable Pins: PWM (Pulse Width Modulation) Controls Speed
- Logic Pins: Controls Forward and Backward Movement of each motor.

7.4V LiPo Battery **GND** 5V output Vcc Motor A Motor B Motor A Motor B **Motor Driver** (Logic Pins) ENA 1 **ENB** MSP430

Motor Driver Chip Selection

Speaking: Bernardo Correa

L298N

- Wider Operating Range
- Allows for longer operation since LiPo battery is 7.4V
- Cheapest

Specifications	L293D	L298N	Viper 35A
Voltage	Up to 14V	5V – 24V	7V – 30V
Current	Up to 2A	Up to 2A	Up to 35A
Dual Motor	Yes	Yes	Yes
Speed Controller	Yes	Yes	Yes
Price	\$5.89	\$4.30	\$21.89

Speaking: Bernardo Correa

Motor Driver Functionalities

Motor Driver Parts/PinOuts	Function	
VCC	5V - 12V Operating Voltage Range	
MOTOR A/B (+ -)	Positive and Negative Terminals for both motors. Internal connection to H-Bridge	
5V output pin	Internal 5V regulator that outputs 5V	
ENA, ENB	Logic Pin for Speed Control using Pulse Width Modulation	
Pins 1,2,3,4	Logic Pins for Forward/ Backwards Motion	
H-Bridge	Internal Chip to drive motors Forward and Backwards.	

Motor Driver Design Decisions and Difficulties

Speaking: Bernardo Correa

- Autonomous movements using GPS Interface or predetermined location?
 - Dependent on scale of system
 - Small Scale Prototype: Predetermined Location
 - Large Scale Product: GPS Interface for autonomous movements
- Dual Motor Driver and H-Bridge is critical for design completion
 - Allows for speed control on 2 motors simultaneously

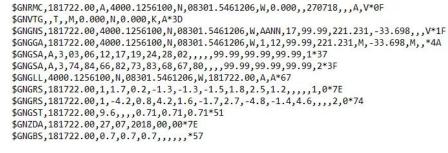
Progress Report:

Initial Prototype Testing - Completed Full Autonomous Test using Predetermined route - Completed Total Subsystem Progress: 100%

GPS Locator Chip Diagram

Speaking: Bernardo Correa

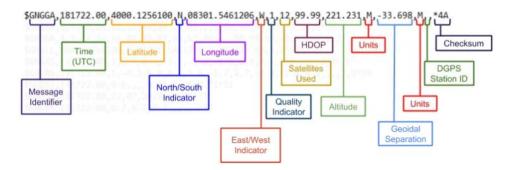
- 3.3V Input Requirement
- UART Communication @9600 Baud Rate
- GPS Chip Sends NMEA Sentences (National Marine Electronics Association)


```
7.4V LiPo Battery

DC-DC Converter (3.3V)

Vcc GND RX

IX GPS


RX NC
```


Coordinates Sent to Receiver

- NMEA Sentences are decoded, sorted and organized.
- Display Shows Latitude, Longitude, and Altitude.
- Time Interval is confirmed at 1 Second Update Time

Latitude in Decimal Degrees : 28.574319 Longitude in Decimal Degrees : -81,237281 Altitude : 42,900001 Time : 00/54/39 Latitude in Decimal Degrees : 28.574317 Longitude in Decimal Degrees : -81,237281 Altitude : 42,700000 Time : 00/54/40 Latitude in Decimal Degrees : 28.574316 Longitude in Decimal Degrees : -81.237281 Altitude : 42.099998 Time : 00/54/41 Latitude in Decimal Dagrees : 28.574316 Longitude in Decimal Degrees : -81,237281 Altitude : 41.099998 Time : 00/54/42 Latitude in Decimal Degrees : 28.574314 Longitude in Decimal Degrees : -81.237281 Altitude : 40.299999

Altitude : 39,000000

Time : 00/54/38

GPS Selection Progress Discussion

Speaking: Bernardo Correa

- NEO 6m Selection
 - Operating Voltage contains 3.3V
 - Data Transfer Rate (constant update)
 - Fast Start Up
 - Cost effective

Progress Report:

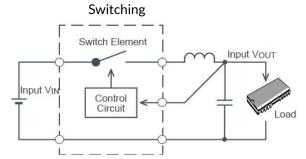
Initial Prototype Testing - Completed PCB Implementation - Completed

Total Subsystem Progress: 100%

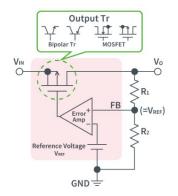
Specifications	NEO 6m Module (selected)	Pharos 360 Module	Particle Boron LTE
Operating Voltage	2.7V - 3.6V	3V	3.7V
UART Interface	Yes	Yes	Yes
Receiver	50 Channel	12 Channel	150
Wireless	No	No	Yes
Data Transfer Rate	1 Hz	1 Hz	429
Location Start-Up Time	27 Seconds	60 seconds	<1 second
Cost	\$21.95	\$18.50	\$59.99

DC-DC Converter, Technology Comparison

Speaking: Bernardo Correa


Switching Regulator

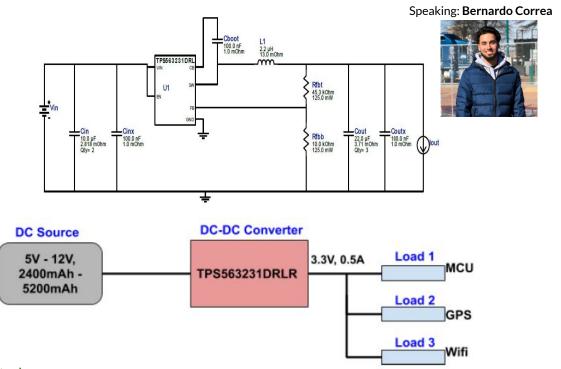
- Buck, boost, buck-boost, and flyback types
- Switching element used to convert power from supply to pulsed voltage, then smoothed by L's & C's
- Constant switching allows for heat dissipation


Linear Regulator

- Simpler, cheaper designs
- One configuration the step down converter (buck)

Specifications	Linear Regulator	Switching Regulator
Noise	Low	High
Efficiency	Low	High
Heat Generation	High	Low
Circuit Complexity	Low	High
Operations	Buck (Step-up)	Buck, Boost, Negative

Linear



DC-DC Converter

- Buck Converter
 - o Input range: 5V-12V
 - o Output: 3.3V
- Critical for multiple subsystems
 - Microcontroller
 - GPS
 - WiFi
 - Depth Sensor (Oscillator)

Progress Report - 75%

Regulator Output Testing on PCB - Completed PCB Design Layout - Completed

PCB Schematic

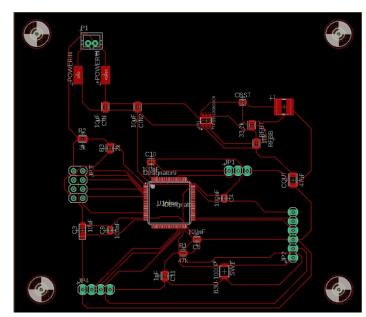
Speaking: Bernardo Correa

Schematic Diagram for Prototype PCB

- MSP430FR5994
- 4 Connector Pin Headers
 - **GPS**
 - **Dual Motor Driver**
 - Wifi Module
 - Code Upload
- **Buck Converter**

SDR0403-3R3ML

Design Progress: 85% completed

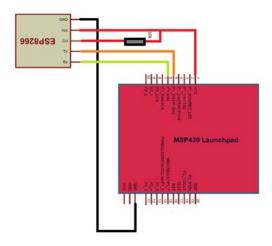

Speaking: Bernardo Correa

PCB Design

• PCB will be used for all system functions

 Image Processing is solely done on the Raspberry Pi

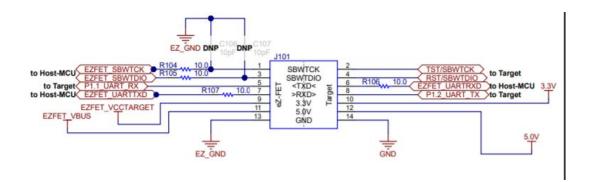
PCB Progress: 100%



Communicating Wirelessly with the MSP430

Speaking: Dariel Tenf

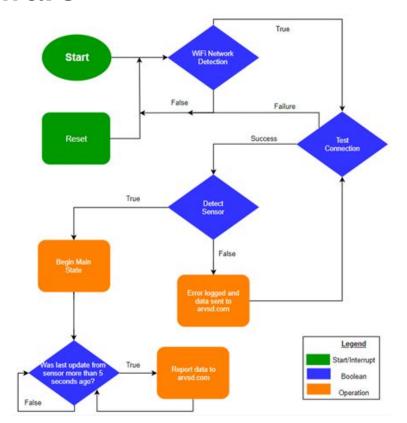
- MSP430's typically do not come with a WiFi adapter.
- To compensate, we will be using a ESP8266 WiFi module.



Uploading Code to MSP430FR5994

On board serial FET using the TI Launchpad

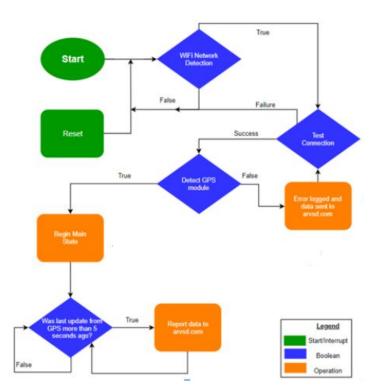
Development Process



For the production stage of the A.R.V., we've decided to utilize the Agile software development technique to optimize the pace at which we can accomplish the project. We've split the production stage into three sprints which are listed as follows:

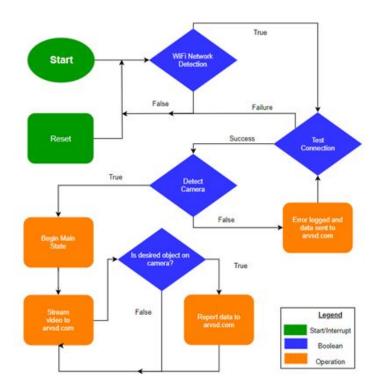
Sprints	Product	
1 st Sprint	Automation implemented	
2 nd Sprint	Camera streaming implemented	
3 rd Sprint	Image processing implemented	

Sensor Software



Speaking: Dariel Tenf

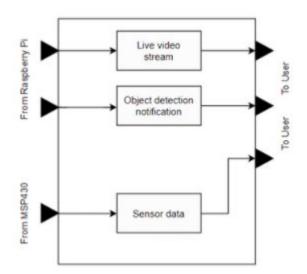
GPS Software



Speaking: Dariel Tenf

Camera Software

Speaking: Dariel Tenf



User Interface

Speaking: Dariel Tenf

• The user will interface through a website, Ubidots will be used to receive data wirelessly and allows for updating data to be refreshed.

Testing

- The final product was put through 9 distinct levels of testing
- Each one is used to test a different complexity of this product
- Level one is the initial testing of the equipment alienated from their counterparts
- Each level is is more complex than the next until the end of the product
- Level nine is the final test of a fully integrated product in the terrain it was meant for

Standards and Constraints

<u>1679.1 Lithium Based Batteries Standard - Design Impact</u>

- Over discharge for a prolonged time causes critical voltage values.
 - Possibility of shorts and failures
- For safety, the solution is to constantly monitor the batteries voltage

Ethical, Health and Safety Constraints

- LiPo Battery is placed in secure location in the design
 - Decreases safety hazards that can be caused by water damage or heavy vibrations
- Tightened Specifications and requirements for system due to constraints
 - O Delays in data or inaccurate data can result in failure of system functions

Difficulties and Successes

Speaking: Samuel Frisco

Difficulties

- Image Processing
- Using Wifi to transfer data from MSP430 to Website
- GPS Compatibility with ESP8266 Wifi Chip

Successes

- GPS is fully functional and meets requirements of 3 decimal places of accuracy
- Motor driver testing was successful and functional.
- ADC for battery monitoring was successful and displayed accurate results
- Image Processing was successful
- Regulator output was accurate and efficiently supplying power to multiple components.

Successful Completion

- Image Processing with Raspberry Pi 100%
- Autonomous Motor Control using Motor Driver 100%
- GPS 100%
- Voltage Monitor 100%
- Wifi (for wireless transfer of sensor data) 100%
- PCB/Schematic 100%

Timeline

- GPS module and camera module powered and tested during SD1
- Motors fully functional and automated September, 21st
- PCB ordered and tested September, 21st October 2
- Image processing software completed October, 28th
- Depth sensor using SM111 November, 5th
- Final integration of all software and hardware November, 20th
- Final product completion going into final testing November, 22nd
- Final video and presentation recorded before November, 28th

Expenses

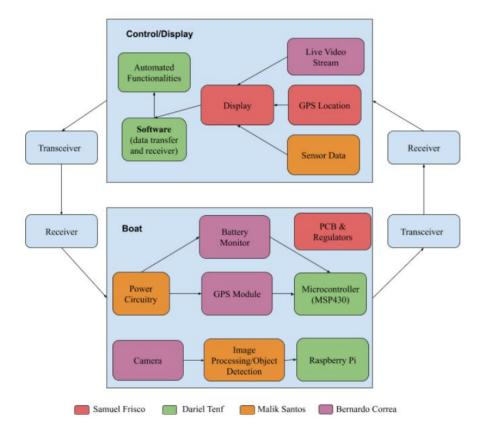
Speaking: Samuel Frisco

Cost Item

Total Expenses \$376.23

Large Expenses

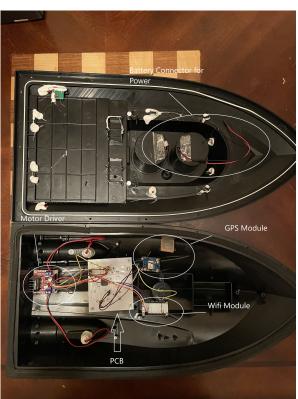
\$125 Flytec HQ2011 \$49


PCB Components

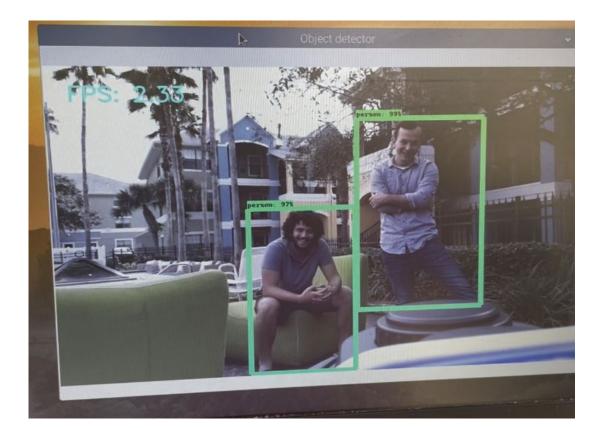
\$28 Raspberry Pi Camera Module

1000		
MSP430FR5994 x4	\$29.00	
Flytec HQ2011 RC boat (and remote)	\$125.00	
Raspberry Pi Battery pack	\$25.00	
Components for PCB	\$48.50	
VytaFlex 20	\$28.35	
Raspberry Pi Camera Module V2-8	\$27.01	
Pcb Assembly	\$23.90	
NEO-6M GPS Receiver Module	\$11.99	
Jumpers	\$7.49	
Battery pack	\$2.00	
Wifi Module	\$15.00	
PCB Stands	\$3.00	
Camera and Pi Casing	\$12.00	
CPU Fan	\$17.99	
Total	\$376.23	

Work Distribution

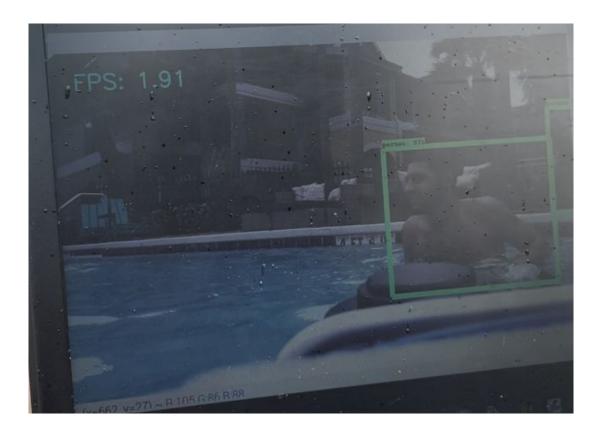


Final Product



Speaking: Samuel Frisco

Object Detection Final Results



Speaking: Samuel Frisco

Detection in Water

Speaking: Samuel Frisco

Speaking: Samuel Frisco **Ubidots Website Interface** Battery widget Latitude Мар Last value 28.574300 Last Updated: 11/19/2020 22:27 7.600000 Longitude Last Updated: 11/19/2020 22:27 Last value -81.237300 Last Updated: 11/19/2020 22:27

Speaking: Samuel Frisco

Thank You

Any Questions?

